

www.usn.no

Faculty of Technology, Natural sciences and Maritime Sciences
Campus Porsgrunn

FM4017 Project 2021

Evaluating the RDS-PS standard for data
structures in the hydropower industry

MP-29-21

www.usn.no

The University of South-Eastern Norway takes no responsibility for the results and

conclusions in this student report.

Course: FM4017 Project, 2021

Title: Evaluating the RDS-PS standard for data structures in the hydropower industry

This report forms part of the basis for assessing the student’s performance in the course.

Project group: MP-29-21

Group participants: Geir Lie

Supervisor: Hans-Petter Halvorsen

Project partner: Skagerak Kraft

Summary:

An upcoming revision of the IEC/ISO 81346-10 standard is aiming to replace existing

tag standards, in the hydropower industry. Implementing the new standard is a resource

demanding task. Translating existing tags to the new standard can potentially reduce

the time and cost expenditure. Existing tag structures were evaluated for automatic

translation. Rulesets and mappings were developed for converting the relevant

structures. A Python script was written to perform the conversion. Existing tags in the

NEK322 standard were unsuited for conversion to the new standard, while EBL Code-

plan and ProSam tags were. 28% of the existing tags were converted to the new

standard.

3

Preface
This report was written to fulfill the requirement for the subject FM4017 Project, in the

Industrial IT and Automation master program at University of South-Eastern Norway. The

project itself was performed in collaboration with the project partner at their office in

Porsgrunn. The student was employed in a part-time position at the company, but the project

was not performed in that capacity. Appendix A contains the task description. Kickoff for the

project was 27. August 2021 and the report deadline 19. November 2021. The project schedule

is contained in Appendix B.

The report is intended for readers assessing the performance of the student in the subject. It

might also be of interest to persons working with implementing RDS-PS in their companies.

I would like to thank my coworkers involved in the project. They provided invaluable

information and helped me gain experience with project management.

Porsgrunn, 18.11.2021

Geir Lie

4

Contents

1 Introduction ... 6

1.1 RDS-PS .. 7
1.2 Existing tag structures ... 7
1.3 Relationships between the new and old tags .. 9

2 Methods ... 10

2.1 Validation of existing data ... 10
2.2 Translation of existing data ... 12
2.3 Automatic creation of RDS-PS tags .. 13

3 Result ... 15

4 Discussion ... 16

5 Further Work ... 18

6 Conclusion .. 19

5

Nomenclature
CSV – Comma-separated values

CW – Construction Works

EBL – The Norwegian Electricity Industry Association

IEC – International Electrotechnical Commission

ISO – International Organization for Standardization

NEK – Norwegian Electrotechnical Committee

PS – Power Supply

RDS – Reference Designation System

SCADA – Supervisory control and data acquisition

6

1 Introduction
An upcoming revision of the IEC/ISO 81346-10 standard, referred to in this report as RDS-PS,

is targeting power supply system. This revision is relevant for the Norwegian hydropower

industry. It aims to addresses problems of existing systems, used to designate components with

tags, and facilitate digitalization [1]. Skagerak Kraft is therefore interested in adopting this new

standard. Implementing it represents a substantial amount of work. The goal of this project was

to utilize existing data structures to automatically create corresponding RDS-PS tags. It was

also a sub-goal to identify new use cases, enabled by the new structure, in the Operations Portal.

This included new filtering options and a corresponding test plan for development. The

Operations Portal is an internal web service for the maintenance personnel.

The existing structures considered in this project consisted of EBL code-plan, used in the

maintenance system, NEK322, used in vendor documentation, and ProSam used in the SCADA

system. They were evaluated for consistencies between power plants and relevance to RDS-

PS. Tags without relevance to part 10 of the standard were excluded. Methods for conversion,

with a minimal number of mapping rules, were developed based on the evaluation. Mapping

rules were created for converting from the existing standards to RDS-PS. A script to convert

the existing tags was created in Python [2]. The functional aspect of RDS-PS was the only one

considered. A system sketch of the conversion process can be seen in Figure 1.

Figure 1: Conversion process

NEK322 dataset

ProSam dataset

EBL Code-plan dataset

CSV files

NEK322 -> RDS-PS Mapping

ProSam -> RDS-PS Mapping

EBL -> RDS-PS mapping

CSV files

NEK322 dataset

ProSam dataset

EBL conversion

Functions
Python

Convert structure

Method

RDS

Class

Tag

Class

Save structure

Method

RDS-PS

XLSX file

7

1.1 RDS-PS

ISO/IEC 81346 “Industrial systems, installations and equipment and industrial products -

Structuring principles and reference designations” describes how to formulate unambiguous

references to objects in any system [3]. These objects can be represented in several different

aspects. Each aspect focuses on providing information in a different way. The functional

aspect, for example, describes the system with respect to the functions that exists, while the

location aspects give information about the physical placement. A symbol in the tag gives

information about which aspect it belongs to [4]. The equality symbol is used to indicate the

functional aspect. An example of a complete tag is given in Figure 2.

Figure 2: RDS tag in the functional aspect [4]

The tag is made up of a top node and a combination of class codes. Each class code consists

of either one, two or three letters together with a serial number. The serial number is not

intended to convey any information, other than to distinguish between multiple occurrences

of the same class. One letter class codes represent top level objects while the three letter

classes are the most detailed. The tag can consist of any number of class codes, in any order,

which best describe the system. It is required that a one letter class code comes directly after

the top node. When part 12, Construction Works, is used together with part 10, it is

recommended to deviate from this and use a two-letter class following the top node. The top

node is required to contain a unique identifier, which part of the standard and which version

was used to create the structure. It can contain additional information if it is deemed

beneficial.

1.2 Existing tag structures

The EBL code-plan was distributed in the form of an Excel file [5]. This file describes tags

with up to 5 levels. Each level has an integer value between 0 and 999. It is augmented with 3

higher levels in Skagerak Kraft’s maintenance system. The first level describes which

company, and the following levels are for area group, area, group, unit, component, part

component and part. The level for company and area group was ignored in this project. Area

group is used to group several plants and waterways, based on physical location. An example

tag can be seen in Figure 3.

<Plant1.RDS1.HP1>=A1.RA1.BJA1

<x> – Top node

Plant1 – SiteIdentifier

RDS1 – RDS-Library

HP1– Profile

 – Functional aspect

X# – Power Supply systems

XX# - Technical systems

XXX# - Component systems

8

Figure 3: EBL code-plan tag

Area is used to reference a specific powerplant or waterway. The following level is an EBL

class code. These classes cover the largest structures, such as control system, turbine, reservoir,

and buildings. Unit is used to number repeating occurrences of the same group class, within an

area. A zero unit is used to hold general structures which are independent of multiple

occurrences. The component level describes different objects the group consists of. For a

turbine, this contains runner, draft tube and bearing, among others. Some of the numbers refers

to a single possible occurrence of a part, such as the draft tube, while others have a dedicated

series of numbers. A turbine bearing is an example such a component, where a range of

numbers contains other component related to this bearing. There is a gap in the numbering of

the next non-bearing component, which allows for having several bearings. Part component is

more detailed than component and have a similar numbering schema, where some numbers

identify unique occurrences and others have a dedicated repeatable series. The part level is not

used in Skagerak Kraft. Application of the EBL code-plan within the company is deliberately

restricted in detail. Most larger components are not described to the detail the standard

facilitates.

NEK 322, “Documentation Used in Electrotechnology – Part 2: Power Supply Systems”, is

withdrawn [6]. It is still in use for new projects and current documentation. The standard is a

part of a series, ranging from NEK321 to NEK325 [7]. NEK321 covers the general

requirements, while the others address specific industries. It defines tags for the individual

physical components, and larger units, in a power plant. This standard series is used throughout

the documentation of the different plants. Cables, relays, and terminal blocks are examples of

individual products which have references with this system in the documentation.

Unfortunately, the storage format of the documentation for the different plan is

inhomogeneous. Older installations are documented with scanned copies of original paper,

while newer are in PDF or even contains component lists in spreadsheets. In addition, there is

a large variation in the structure of the documents from different suppliers. An example of a

tag can be seen in Figure 4.

1001.421.001.071.020

Area

Group

Unit

Part

Part component

Component

9

Figure 4: NEK322 tag

The tag described by the standard can belong to different groups, which convey different

information. Three groups, with identifiers, are specifically described: Function-oriented (=),

product-oriented (-) and placement-oriented (+) structure. The example contains the

corresponding tag from each group. Each tag can contain several levels. The level contains a

class code and a serial number. No information is attributed to the serial number, it only serves

to separate multiple occurrences of the same class within the same level. The different groups

are sometimes combined, in existing documentation, to provide the information in a single line

of text.

ProSam, “Produksjon med samarbeidende driftssentraler” (translated: Production with

Cooperating Operation Centrals), was implemented by Statkraft in 2006 [8]. It defines a tag

structure for communicating with their operation central. The tag structure is not further

explained in this report, in order to present the work with open access.

1.3 Relationships between the new and old tags

The use of EBL and NEK322 in Skagerak Kraft’s systems targets the same type of objects.

They are used to identify physical components in the plants. The main difference in

application, is the level of detail. This supports the intended functions they perform in the

company. In addition, NEK322 is limited to electrotechnical components. EBL is intended to

be used for all technical disciplines. There is also a difference in the amount of information

contained. EBL focuses solely on the existence of the object, while NEK322 contain

information about the placement, functionality, and which component the object is a part of.

ProSam focuses on different objects, compared to the other existing structures. It is used to

describe data exchange in the SCADA system. This means that it contains information about

sensors and events in the power plants, which constitutes the functionalities of the physical

objects.

RDS-PS is intended to replace all of the tag systems considered in this project [1]. This

alludes to a relationship between the existing systems and RDS-PS. NEK322 has the

strongest resemblance, both with respect to the information contained and the tag structure

itself. Both RDS-PS and NEK322 describes multiple structures, each intended to convey

different information. The structures in NEK322 have similar counterparts in RDS-PS and

uses the same symbols to distinguish between them. This indicates the possibility of

automatic conversion. EBL contains information for components that are not present in the

other existing systems. It also has a rigid structure, which should help with mapping it to

RDS-PS. ProSam also has information to contribute, which is not present in the other

systems. This relates mainly to functionalities of the controls systems. The functional aspect

of RDS-PS is suited to contain this information.

=A1=NE1

-P1

+R1+1

Function

Product

Placement

10

2 Methods
The existing data structures were extracted from their systems. Microsoft Excel [9] was used

to validate the consistency within each structure and if they held information relevant to the

functional aspect of RDS-PS. Excel was also used to create a minimal representation of the

different tags in each system. This representation was used to create a mapping between each

structure and RDS-PS. Python was used to implement an automatic conversion between the

existing data and a new RDS-PS structure.

2.1 Validation of existing data

Documentation for the control systems was targeted to be used as a source for creating a dataset

of known NEK322 designated components. The different EBL tags were available in the

maintenance system as a dataset. A dataset of ProSam tags was exported from the SCADA

system.

The content of the columns in the EBL dataset was cleaned with a Power Query in Excel. Tags

which had a waterway as the area was removed. This was because information about

relationships to power plants, was not contained in the tag. Columns which did not contain

information relevant to the conversion was removed. This included the columns for company,

area group and part. The query also separated the EBL class from the description and combined

all the columns into one tag. A filter was also implemented to remove EBL groups not relevant

to RDS-PS. The query can be seen in Appendix C and the groups that were filtered out in Table

1.

The consistency of the EBL dataset was validated by grouping the tags with a Power Query. A

new column was created to group the tags by. The column had the unit class replaced with an

exclamation mark. In addition, the area class was removed from tags that had additional classes.

The description for each row in the group was then concatenated and added as a new column.

A column was also added with the count of rows within each group. Each group was then

inspected to verify that the descriptions of the tags within were consistent with the code-plan.

This was a prerequisite if the tag code could be used to automatically be translated. The Power

Query for grouping the tags can be seen in Appendix D.

Table 1: EBL classes filtered out (Norwegian names) [5]

Group Name

885 LØFTE- OG HEISEINNRETNINGER

891 VERNE- OG SIKKERHETSUTSTYR

(FLYTTBART)

000 Felles

894 MÅLEINSTRUMENTER

(TRANSPORTABLE)

11

890 DIVERSE

881 KJØRETØY OG BÅTER

877 GRUSTAK, TIPP OG DEPONI

876 GRØNTANLEGG-PARKER-PLASSER

871 VEIER OG BRUER

870 UTEANLEGG

855 BÅTHUS

853 HYTTER

847 AGGREGAT- OG SPILLHUS

877 GRUSTAK, TIPP OG DEPONI

846 FJELLROM ADKOMSTTUNELLER

845 VERKSTED OG LAGER

841 STASJONSBYGG I FJELL

842 PORTALBYGG

843 STASJONSBYGG UTE

878 VANNFORSYNING

830 ADMINISTRASJONSBYGG -

VELFERDSBYGG

831 ADMINISTRASJONSBYGG

A similar method was used with the ProSam dataset. The number of ProSam tags were several

times larger than EBL. The dataset was therefore evaluated by grouping the tags independent

of the first and last part of the tag. The number of different power plants represented in each

group was then counted. Tag groups which contained less than 10% of the power plants, were

filtered out.

12

2.2 Translation of existing data

The validated EBL dataset was used as the basis for creating a mapping to RDS-PS. Each

row from the dataset was used as an entry in the tag mapping. The mapping also contained

the columns with concatenated tag descriptions and count, to guide the effort when mapping

it to RDS-PS. An additional column was added to contain the corresponding RDS-PS tag. A

second column was added, which contained a number to identify if the row was a mapping of

the area part of the tag or the remainder. The symbol “X” was used in the RDS-PS tag for

EBL tags without a clear conversion. This was relevant for groups containing tags with

different functionality. The symbol “!” was used in the RDS-PS if the unit number was

necessary for the conversion. Mapping of some example tags are showcased in Figure 5.

Figure 5: Illustration of the mapping process

Some combinations of static numbers were used to confer special meaning to tags. The

number 1 was used as the serial number for classes which were known to occur once. The

class “JB” with number 5 was used to identify a common waterway. “H2” was used to refer

to a bailing disposing system. The high voltage tags were mapped to a combination of the

class “B” and the voltage level. “D1” was reserved for the low voltage support system and

“D2” for the direct current support system. “F1” was used for tags mapping to the managing

system.

A similar approach to the EBL tags was used for the ProSam dataset. The tags from the

original dataset were split into three parts and separated into different tables. Repeating

occurrences of substrings were removed from the tags. The split occurred after the first part

and before the last part in the tag. String manipulation was performed on the middle part to

replace identifying numbers with an “!” symbol. Each table was then grouped by the tag. A

concatenated column was added, with the descriptions, and a column with the count of rows.

The table with the middle part of the tag was filtered to only contain groups that had

occurrences in at least 10% of the plants. The table with the last part was filtered to only

contain groups with more than 10 tags. A union was then performed on the three tables to

create a mapping file for ProSam tags, with the same structure as for EBL. The column which

1001 Plant 1 1 <Plant1.PS1.HP1> 0

1002

421.!

Plant 2 1 <Plant2.PS1.HP1> 0

Generator 1:

Generator 2:

Generator1

3 A!.RA1 1

1001.421.001

Generator 1

1001.421.002

Generator 2

1002.421.001

Generator 1

1002

Plant 2

1001

Plant 1

13

indicated which part of the tag it mapped, contained 0 for the first part, 1 for the second and 2

for the final part.

The same reserved classes were reused from the EBL mapping. A new symbol, “|”, was

introduced to indicate voltage level in the ProSam tag. This symbol was then used in the

mapping to correspond to a “B|” class in RDS-PS.

2.3 Automatic creation of RDS-PS tags

A Python script was chosen as the tool for automatic conversion of the existing tags. The

analysis and design of the software was performed in a simple fashion, without making use of

a formal development process. It consisted of identifying the necessary classes and methods,

in order to convert tags based on a provided dataset, mapping and conversion function. The

result of conversion from each data source was to be added to an RDS-PS structure, which

could then be printed to the screen or saved as an XLSX file.

The code was structured with two classes. A class named “RDS” for controlling the

conversion process and a “Tag” class for storing tag data and methods. A tree structure was

used to organize the tags. Conversion from the original standards was handled with a method

in the “RDS” class, which accepted a function in addition to the tag file and corresponding

mapping file. A function for conversion was created for each relevant standard. These

functions were created to handle the differences between the standards. The usage of the

created classes can be seen in Table 2.

Table 2: Python code usage example

rds = RDS()

rds.convert_structure("path/EBL_dataset.csv", "path/EBL_mapping.csv",";",

convert_EBL)

rds.convert_structure("path/ProSam_dataset.csv",

"path/ProSam_mapping.csv",";", convert_ProSam)

rds.print()

The EBL function splits the tag into two, with the first part containing the power plant and

the second containing the structure. The corresponding function for ProSam splits the tag into

three sub-tags. They both perform string manipulation, afterwards, to look for a mapping for

each sub-tag. Figure 6 illustrates the conversion function for EBL tags. These functions

accepted lists with the dataset and corresponding mapping. They returned a list of translated

RDS-PS tags, a list of the original tags and a string containing the source of the tags. The data

was then added to the RDS-PS structure by recursively searching through the structure.

Dummy objects were created whenever it was not explicitly specified by the converted tags.

The name of the dummy object was added if it was defined by another tag later.

14

Figure 6: EBL conversion function flowchart

A method in the “RDS” class was made to export the converted structure. It had an XLSX

file, with a row for each RDS-PS tag, as output. The “pandas” library was used to create the

file [10]. It had columns for storing the complete RDS-PS tag, the descriptive name and a

column containing the original tags which corresponds to it. The last column was structured

as the string representation of a Python dictionary, with a key for each of the old systems,

which contained a list of the relevant original tags. The source code for the script is contained

in Appendix F.

The functionality of the script was verified by using the “unittest” framework, from the

Python standard library. Only unit tests were created, because of the simple relationship

between the created classes. 11 tests were created for the “Tag” class, 6 for the “RDS” class,

8 for the conversion function for EBL and 5 for the conversion function for ProSam. The

tests can be seen in Appendix G.

Tag

Split tag

Check mapping

first part

Converted tag

Mapping exist

No:

Next tag

No second part

Yes

Yes

Next tag

Split second part

No

More than 1 sub-

part

Replace serial

number

Mapping exist

Check mapping

second part

Add serial number

and combine with

first part

Yes

No:

next tag No:

next tag

Yes

15

3 Result
A dataset of NEK322 tags was not created. The different EBL tags were available in the

maintenance system as a dataset, consisting of 3380 tags. A dataset of 11667 different ProSam

tags was gathered from the SCADA system.

The EBL dataset was consistent, independent of power plant. A total of 2352 tags from the

dataset were designated as relevant for RDS-PS. The ProSam dataset contained tags which

were independent of power plant. A total of 199 groups, with 7764 tags combined, contained

a structure which were present in at least 10% of the plants. Based on the validation, was EBL

and ProSam both considered possible and useful to convert into RDS-PS.

The created EBL mapping consisted of 274 rows in a CSV file, mapping two different parts of

the tag. An anonymized version of the mapping can be seen in Appendix E. Corresponding

RDS-PS tags was found for 78 of the rows. The total mapping of ProSam tags consisted of

4779 rows, representing three different parts of the tag. This number was filtered down to 422

rows. A translation into RDS-PS was identified for 335 of the rows.

The conversion script passed all the tests. With the mappings created, it was able to convert

1090 of the EBL tags. The corresponding number for ProSam tags was 2897. An XLSX file

with RDS-PS tags, and which tags they originated from, was the result. The total percentage

of converted relevant tags was 28%.

16

4 Discussion
The revision of the standard was not released before the project ended. As a result, it is

necessary to consider the validity of the content in this report as subject to change.

Creating a dataset with tags described with NEK322 could have been done. The existing

documentation makes extended use of it. It was deemed to be out of the scope to create a

dataset, due to the varying file formats and PDF structures. This limited the result from the

conversion. NEK322 is probably the existing standard which most closely resembles RDS-

PS. Creating a mapping for it might therefore be more efficient than for the other structures.

It is also the existing structure with the most relevance for other aspects of RDS-PS. Since no

dataset was created, was it impossible to check how consistently the standard is applied.

There might be inconsistencies in the way it is used on different plants, which could make it

impossible to translate with the method developed in this project.

EBL tags with waterway area codes were ignored in this project. The process of creating

relationships between them and the powerplants was estimated to require more resources than

were available in the project. There was more information available about the waterways in

the EBL dataset than the ProSam. The omission of the tags from the EBL dataset might have

prevented the discovery of problems with the conversion method. Other tags were also

excluded, based on the group code. The filter used impacted the created mapping. Choosing a

different boundary between PS and CW, might also expose problems with the methods used

in this project.

Information was lost when the ProSam dataset was reduced, to only those categories existing

in multiple plant. This approach drastically decreased the number of entries in the mapping,

but it might suppress problems with the general approach used. No verification was done to

check which tags were removed from the dataset. The reduction was necessary to complete

the mapping with the allocated resources. It also helped to focus the translation, on the most

general tags. The tags in the dataset were not evaluated for relevance to RDS-PS. This affects

the percentage of tags converted.

A separate mapping was created for each of the data structures translated in this project.

Keeping both updated, with respect to each other, might reduce the advantage of using the

automatic conversion script. This challenge is amplified by the uncertainty regarding how to

apply the new standard, within the project group. Using serial numbers without meaning was

ignored in this project. The conversion script can be extended to trim down the numbers in

the converted structure, but it is helpful to clearly see the reserved numbers while the RDS-

PS is still in an early face of implementation in the company.

There was also a large uncertainty regarding verifying the converted tags. The revision of the

ISO standard was not released during the project and no generally accepted structure was

found to compare against. As a result, there might be problems converting tags that was not

discovered in this project. The resulting conversion method developed in this project may be

useful for Skagerak in the future. As new features are added to the maintenance system,

including support for RDS-PS, will it be necessary to document the relationship between the

tag structures. The automatic conversion, based on the mappings, can provide this.

Several problematic components were discovered. Station transformers are likely to be

untranslatable based on the EBL or ProSam tag. No information was found in the relevant

17

tags about what function it performs. The same goes for other parts of the high voltage

system. It is expected that such systems should be divided based on galvanic separation,

according to RDS-PS. There are few tags for busbars or cables in the datasets considered in

this project. Translating the high voltage system in general might therefore be impossible

with the developed method. Breakers and switches also represent a problem, as there needs to

be a heavy emphasis on reserved tags to combine them from both existing structures.

Considering the discovered problems with the method, along with the possibilities of

undiscovered problems, is there a likelihood that there is little time saved by automatically

converting existing tag structures.

Focusing on the existing systems may hamper acclimation to the new standard. Many of the

translated tags are general to any power plant. A better way to reduce the work with

implementing RDS-PS might be to create templates for different configurations used in

power plants. This would be conducive to understanding the standard, while reducing

repetitive work. Basing the templating system on common configurations would also limit

the amount of work required if there was a change in the application of the standard.

The sub-goal of implementing new features in the Operation Portal was not achieved.

Priorities in the development of the service was focused elsewhere and it was not possible to

schedule it during the project. This also included the discovery of use cases, which also made

it impossible to create a test plan for new filtering options.

18

5 Further Work
The approach used in this project for RDS-PS, should be transferable to RDS-CW. Only a

fraction of the tags described with ProSam are likely to be of relevance, but several classes

filtered out from EBL are.

Each of the existing tag system contains different information about the power plants.

NEK322 contains the most detail and is the only which provides information about the

physical placement of components. Creating a dataset of NEK322 tags should be a priority if

a similar approach is to be tried with the location aspect. It will likely also improve the

conversion for the functional aspect.

It is recommended to revisit the result from this project after the revision to the RDS-PS

standard is released, along with guidelines for the reference designation process. The

mappings will need to be updated, as the target structure changes. A method to incorporate

EBL tags for the waterways should be devised in conjunction with this. It is also

recommended to compare the created RDS-PS tags to other companies in the industry, as a

method to verify the results and harmonize the application of the standard.

19

6 Conclusion
Components tagged with NEK322 was found unusable for conversion to RDS-PS in this

project, due to the format the relevant documentation exists in. The systems using EBL and

ProSam contained accessible and structured information about the power plants. 1090

relevant EBL tags out of 2352 were converted into RDS-PS, and 2897 out of 11667 ProSam

tags were converted. No functionality for filtering, or other utilization for RDS-PS, was

implemented in the Operation Portal.

20

References

[1] Energi Norge, "Digitalisering: RDS-Hydro Power," [Online]. Available:

https://www.energinorge.no/fagomrader/forskning/forskningsprosjekter/produksjon/RD

S-Hydro-Power/. [Accessed 15 11 2021].

[2] The Python Software Foundation, "The Python Language Reference," The Python

Software Foundation, 18 12 2019. [Online]. Available:

https://docs.python.org/release/3.8.1/reference/index.html. [Accessed 14 11 2021].

[3] ISO, "IEC 81346-1:2009 - Industrial systems, installations and equipment and industrial

products — Structuring principles and reference designations — Part 1: Basic rules,"

[Online]. Available: https://www.iso.org/standard/50857.html. [Accessed 04 10 2021].

[4] Energi Norge, "Introduksjon til RDS Power systems," 2021. [Online]. Available:

https://www.energinorge.no/kurs-og-konferanser/2021/01/rds-isoiec-81346-

referansestruktur-for-digitalisering-i-vannkraften/. [Accessed 14 11 2021].

[5] Energibedriftenes Landsforening (Energi Norge), "Publication 54-2001," Energi Norge,

2001.

[6] Standard Norge, "NEK 322:1995," Standard Norge, 01 03 2019. [Online]. Available:

https://www.standard.no/en/webshop/productcatalog/productpresentation/?ProductID=1

31870. [Accessed 14 11 2021].

[7] Norsk Elektroteknisk Komite, Documentation used in electrotechnology, part1: general

requirements, Oslo: Standard Online AS, 1999.

[8] K. Strøm, "Driftssentraler samordnes," Teknisk Ukeblad, 23 05 2006. [Online].

Available: https://www.tu.no/artikler/driftssentraler-samordnes/325957. [Accessed 04

10 2021].

[9] Microsoft, "Microsoft Excel (365)," 2021. [Online]. Available:

https://www.microsoft.com/en-us/microsoft-365/excel. [Accessed 14 11 2021].

[10

]

The pandas development team, "pandas-dev/pandas: Pandas," Zenodo, February 2020.

[Online]. Available: https://doi.org/10.5281/zenodo.3509134. [Accessed 14 11 2021].

21

Appendices

Appendix A Task description

Appendix B Project schedule

Appendix C Power Query for filtering and cleaning the EBL dataset

Appendix D Power Query for validating the EBL dataset

Appendix E EBL to RDS-PS mapping

Appendix F Python conversion script source code

Appendix G Python test scripts

22

Appendix A Task description

FM4017 Project

Title: Evaluating the RDS standard for data structures in the hydropower industry

USN supervisor: Hans Petter Halvorsen, Nils-Olav Skeie

External partner: Skagerak Kraft AS

Task background:
The Reference Designation System – Hydro Power (RDS-PS) standard, part 10 of IEC/ISO
81346, is expected to launch in 2021. This standard is to be implemented in the industry.
There are currently several different structures used to describe hydropower plants, for
different use cases. For example, a structure might be used primarily for maintenance
history, SCADA, or schematics. This creates a barrier to combine data from different
systems, not only within a company but also between different companies. Implementing
the new RDS standard, which aims to replace the existing structures, will facilitate new ways
to leverage the existing data.

Task description:

• Make an overview of existing data structures like NEK322, PROSAM and EBL that are
used to describe power plants and identify to which degree they comply between
the plants. The focus should be PROSAM and EBL.

• Include a description of the RDS-PS standard and relate the description to the
overview of existing data structures.

• Compare the existing data structures and create an overview of existing components
that can be useful for the RDS-PS standard.

• Analyse and design a software application in Python that, to the largest extent
feasible, can automate the creation of the new RDS structure. Among the different
aspects available in RDS, will the functional aspect be prioritized.

• Identify the usefulness of implementing the new structure. This will be explored by
using the structure to implement new features in the Operation Portal (Service
developed by the external partner).

• Prepare the RDS structure to be used as a filtering option in the Operation Portal.

• Make a test plan for testing the filtering feature.

Student category: IIA industry master students employed at Skagerak Kraft AS

23

The task is suitable for students not present at the campus (e.g. online students): No

Practical arrangements:

Project group led by the student with participants from the external partner. The
participants contribute with domain specific knowledge in power plant structure, RDS and
existing data systems.

Signatures:

Supervisor (date and signature):

Students (write clearly in all capitalized letters + date and signature):

24

Appendix B Project schedule

25

26

27

Appendix C Power Query for filtering and
cleaning the EBL dataset

let

 Kilde = ELB_Ra,

 #"Fjernede kolonner" = Table.RemoveColumns(Kilde,{"Del"}),

 #"Filtrerte rader" = Table.SelectRows(#"Fjernede kolonner", each [Områdegruppe] <> null

and [Områdegruppe] <> ""),

 #"Fjernede kolonner1" = Table.RemoveColumns(#"Filtrerte rader",{"Selskap"}),

 #"Filtrerte rader1" = Table.SelectRows(#"Fjernede kolonner1", each [Område] <> null and

[Område] <> ""),

 #"Fjernede kolonner2" = Table.RemoveColumns(#"Filtrerte rader1",{"Områdegruppe"}),

 #"Del kolonne med skilletegn" = Table.SplitColumn(#"Fjernede kolonner2", "Område",

Splitter.SplitTextByEachDelimiter({" -"}, QuoteStyle.Csv, false), {"Område.1",

"Område.2"}),

 #"Endret type1" = Table.TransformColumnTypes(#"Del kolonne med

skilletegn",{{"Område.1", type text}, {"Område.2", type text}}),

 #"Filtrere anlegg" = Table.SelectRows(#"Endret type1", each not

List.Contains(FilterAnlegg,[Område.1])),

 #"Fjernede kolonner3" = Table.RemoveColumns(#"Filtrere anlegg",{"Område.2"}),

 #"Del kolonne med skilletegn3" = Table.SplitColumn(#"Fjernede kolonner3",

"Komponent", Splitter.SplitTextByEachDelimiter({" -"}, QuoteStyle.Csv, false),

{"Komponent.1", "Komponent.2"}),

 #"Del kolonne med skilletegn1" = Table.SplitColumn(#"Del kolonne med skilletegn3",

"Gruppe", Splitter.SplitTextByEachDelimiter({" -"}, QuoteStyle.Csv, false), {"Gruppe.1",

"Gruppe.2"}),

 #"Endret type2" = Table.TransformColumnTypes(#"Del kolonne med

skilletegn1",{{"Gruppe.1", type text}, {"Gruppe.2", type text}}),

 #"Filtrere klasse" = Table.SelectRows(#"Endret type2", each not

List.Contains(FilterKlasser,[Gruppe.1])),

 #"Fjernede kolonner4" = Table.RemoveColumns(#"Filtrere klasse",{"Gruppe.2"}),

 #"Del kolonne med skilletegn2" = Table.SplitColumn(#"Fjernede kolonner4", "Enhet",

Splitter.SplitTextByEachDelimiter({" -"}, QuoteStyle.Csv, false), {"Enhet.1", "Enhet.2"}),

 #"Endret type3" = Table.TransformColumnTypes(#"Del kolonne med

skilletegn2",{{"Enhet.1", type text}, {"Enhet.2", type text}}),

 #"Fjernede kolonner5" = Table.RemoveColumns(#"Endret type3",{"Enhet.2"}),

 #"Endret type4" = Table.TransformColumnTypes(#"Fjernede

kolonner5",{{"Komponent.1", type text}, {"Komponent.2", type text}}),

28

 #"Fjernede kolonner6" = Table.RemoveColumns(#"Endret type4",{"Komponent.2"}),

 #"Del kolonne med skilletegn4" = Table.SplitColumn(#"Fjernede kolonner6",

"Delkomponent", Splitter.SplitTextByEachDelimiter({" -"}, QuoteStyle.Csv, false),

{"Delkomponent.1", "Delkomponent.2"}),

 #"Endret type5" = Table.TransformColumnTypes(#"Del kolonne med

skilletegn4",{{"Delkomponent.1", type text}, {"Delkomponent.2", type text}}),

 #"Fjernede kolonner7" = Table.RemoveColumns(#"Endret type5",{"Delkomponent.2"}),

 Egendefinert1 = Table.AddColumn(#"Fjernede kolonner7", "EBL_Kode", each

Text.Combine(List.Select({[Område.1],[Gruppe.1],[Enhet.1],[Komponent.1],[Delkomponent

.1]}, each _<> "" and _ <> null),".")),

 #"Fjernede kolonner8" = Table.RemoveColumns(Egendefinert1,{"Område.1", "Gruppe.1",

"Enhet.1", "Komponent.1", "Delkomponent.1"}),

 #"Omorganiserte kolonner" = Table.ReorderColumns(#"Fjernede

kolonner8",{"EBL_Kode", "Navn"})

in

 #"Omorganiserte kolonner"

29

Appendix D Power Query for validating the
EBL dataset

let

 Kilde = #"Formatere og filtrere data",

 #"Del kolonne med skilletegn" = Table.SplitColumn(Kilde, "EBL_Kode",

Splitter.SplitTextByEachDelimiter({"."}, QuoteStyle.Csv, false), {"EBL_Kode.1",

"EBL_Kode.2"}),

 #"Del kolonne med skilletegn1" = Table.SplitColumn(#"Del kolonne med skilletegn",

"EBL_Kode.2", Splitter.SplitTextByEachDelimiter({"."}, QuoteStyle.Csv, false),

{"EBL_Kode.2.1", "EBL_Kode.2.2"}),

 #"Del kolonne med skilletegn2" = Table.SplitColumn(#"Del kolonne med skilletegn1",

"EBL_Kode.2.2", Splitter.SplitTextByEachDelimiter({"."}, QuoteStyle.Csv, false),

{"EBL_Kode.2.2.1", "EBL_Kode.2.2.2"}),

 #"Fjernede kolonner1" = Table.RemoveColumns(#"Del kolonne med

skilletegn2",{"EBL_Kode.2.2.1"}),

 #"Egendefinert lagt til" = Table.AddColumn(#"Fjernede kolonner1", "Egendefinert", each

"!"),

 #"Omorganiserte kolonner" = Table.ReorderColumns(#"Egendefinert lagt

til",{"EBL_Kode.2.1", "Egendefinert", "EBL_Kode.2.2.2", "Navn"}),

 #"Kolonner med nye navn" = Table.RenameColumns(#"Omorganiserte

kolonner",{{"EBL_Kode.1", "1"}, {"EBL_Kode.2.1", "2"}, {"Egendefinert", "3"},

{"EBL_Kode.2.2.2", "4"}}),

 #"Egendefinert lagt til1" = Table.AddColumn(#"Kolonner med nye navn",

"Egendefinert.1", each if [2] = null then [1] else if [3] = null then [2] else if [4] = null then

[2]&"."&[3] else [2]&"."&[3]&"."&[4]),

 #"Fjernede kolonner" = Table.RemoveColumns(#"Egendefinert lagt til1",{"1", "2", "3",

"4"}),

 #"Omorganiserte kolonner1" = Table.ReorderColumns(#"Fjernede

kolonner",{"Egendefinert.1", "Navn"}),

 #"Grupperte rader" = Table.Group(#"Omorganiserte kolonner1", {"Egendefinert.1"},

{{"Data", each _, type table [Egendefinert.1=text, Navn=nullable text]}}),

 #"Egendefinert lagt til2" = Table.AddColumn(#"Grupperte rader", "Komponenter", each

Table.Column([Data],"Navn")),

 #"Uttrukne verdier" = Table.TransformColumns(#"Egendefinert lagt til2",

{"Komponenter", each Text.Combine(List.Transform(_, Text.From), ";"), type text}),

 #"Aggregert Data" = Table.AggregateTableColumn(#"Uttrukne verdier", "Data",

{{"Navn", List.Count, "Antall Navn"}}),

 #"Sorterte rader" = Table.Sort(#"Aggregert Data",{{"Egendefinert.1",

Order.Ascending}}),

30

 #"Omorganiserte kolonner2" = Table.ReorderColumns(#"Sorterte

rader",{"Egendefinert.1", "Komponenter", "Antall Navn"})

in

 #"Omorganiserte kolonner2"

31

Appendix E EBL to RDS-PS mapping
1001 <Plant1.PS1.HP1> 0

1002 <Plant2.PS1.HP1> 0

1003 <Plant3.PS1.HP1> 0

1004 <Plant4.PS1.HP1> 0

1005 <Plant5.PS1.HP1> 0

1006 <Plant6.PS1.HP1> 0

1007 <Plant7.PS1.HP1> 0

1008 <Plant8.PS1.HP1> 0

1009 <Plant9.PS1.HP1> 0

1010 <Plant10.PS1.HP1> 0

1011 <Plant11.PS1.HP1> 0

1012 <Plant12.PS1.HP1> 0

1013 <Plant13.PS1.HP1> 0

1014 <Plant14.PS1.HP1> 0

1015 <Plant15.PS1.HP1> 0

1016 <Plant16.PS1.HP1> 0

1017 <Plant17.PS1.HP1> 0

1018 <Plant18.PS1.HP1> 0

1019 <Plant19.PS1.HP1> 0

1020 <Plant20.PS1.HP1> 0

1021 <Plant21.PS1.HP1> 0

311.! X 1

311.!.079 X 1

311.!.079.010 X 1

311.!.079.011 X 1

311.!.079.012 X 1

311.!.079.030 X 1

311.!.079.031 X 1

311.!.079.032 X 1

311.!.301 X 1

311.!.302 X 1

311.!.303 X 1

311.!.304 X 1

311.!.305 X 1

311.!.306 X 1

311.!.307 X 1

311.!.308 X 1

311.!.309 X 1

311.!.310 X 1

311.!.311 X 1

311.!.312 X 1

311.!.313 X 1

311.!.314 X 1

311.!.315 X 1

311.!.316 X 1

312.! X 1

32

312.!.079 X 1

312.!.079.010 X 1

312.!.079.011 X 1

312.!.079.012 X 1

312.!.079.050 X 1

314.! X 1

314.!.210 X 1

314.!.220 X 1

314.!.230 X 1

314.!.240 X 1

314.!.250 X 1

314.!.260 X 1

314.!.270 X 1

314.!.270.100 X 1

314.!.300 X 1

314.!.310 X 1

314.!.410 X 1

314.!.510 X 1

314.!.610 X 1

314.!.701 X 1

315.! C! 1

315.!.079 X 1

315.!.079.010 X 1

315.!.210 X 1

315.!.213 X 1

315.!.220 X 1

315.!.230 X 1

315.!.240 X 1

315.!.300 X 1

315.!.310 X 1

315.!.410 X 1

315.!.510 C!.JB5.HQB1 1

315.!.610 X 1

315.!.900 X 1

316.! X 1

321.! X 1

321.!.079 X 1

321.!.079.010 X 1

321.!.200 X 1

321.!.210 X 1

321.!.300 X 1

321.!.301 X 1

321.!.302 X 1

321.!.303 X 1

321.!.304 X 1

321.!.305 X 1

321.!.400 X 1

321.!.600 X 1

321.!.613 X 1

33

321.!.701 X 1

321.!.800 X 1

322.! X 1

323.! C!.JB5 1

323.!.200 X 1

323.!.301 X 1

323.!.302 X 1

323.!.400 X 1

323.!.500 X 1

323.!.510 X 1

323.!.520 X 1

323.!.530 X 1

323.!.540 X 1

323.!.550 X 1

323.!.710 X 1

323.!.800 X 1

324.! X 1

324.!.079 X 1

324.!.079.010 X 1

327.! X 1

327.!.110 X 1

401.! A!.PG1 1

411.! A!.RB1 1

411.!.110 A!.RB1.CNC1 1

411.!.110.300 X 1

411.!.120 X 1

411.!.210 A!.RB1.MLD1 1

411.!.220 X 1

411.!.230 X 1

411.!.240 X 1

411.!.300 X 1

411.!.310 A!.KA1.QNA1 1

411.!.316 A!.KA1.QPC1 1

411.!.320 X 1

411.!.410 A!.JB1 1

411.!.410.110 X 1

411.!.410.120 X 1

411.!.420 X 1

411.!.630 X 1

411.!.640 X 1

411.!.645 X 1

411.!.710 X 1

411.!.720 X 1

411.!.730 X 1

414.! A!.KA1 1

414.!.200 1

414.!.300 A!.KA1 1

414.!.500 A!.KA1 1

415.! X 1

34

415.!.200 A!.KA1.QMA1 1

415.!.500 X 1

415.!.600 X 1

417.! X 1

421.! A!.RA1 1

421.!.100 A!.RA1.RK1 1

421.!.200 A!.RA1.RJ1 1

421.!.250 X 1

421.!.260 A!.RA1.RJ1.XDB1 1

421.!.410 A!.RA1.RLC1 1

421.!.420 X 1

421.!.600 A!.RA1.HE1 1

421.!.700 X 1

421.!.710 A!.JF1.KJ1.UPA1 1

421.!.720 A!.JF1.KJ1.UPA2 1

421.!.900 X 1

424.! A!.RA1.LD1 1

424.!.210 A!.RA1.LD1.TAA1 1

461.! A!.JE1.KF1 1

461.!.200 X 1

462.! X 1

483.! X 1

485.! D1! 1

486.! C1! 1

487.! H2 1

500.! X 1

500.!.060 X 1

500.!.060.140 X 1

500.!.061 X 1

500.!.062 X 1

500.!.071 X 1

514.! X 1

514.!.301 X 1

514.!.401 X 1

514.!.501 X 1

514.!.601 X 1

514.!.701 X 1

514.!.702 X 1

516.! B132.JK! 1

516.!.301 A!.JE1.QAB 1

516.!.401 A!.JE1.QBB 1

516.!.402 A!.JE1.QCA 1

516.!.403 X 1

516.!.601 X 1

516.!.701 X 1

516.!.702 X 1

518.! X 1

518.!.701 X 1

521.! B22.JK! 1

35

521.!.301 A!.JE1.QAB 1

521.!.302 A!.JE1.QAB 1

521.!.401 A!.JE1.QCA 1

521.!.501 X 1

521.!.502 X 1

521.!.601 X 1

521.!.602 X 1

521.!.603 X 1

521.!.701 X 1

521.!.760 X 1

522.! B11.JK! 1

522.!.100 X 1

522.!.301 A!.JE1.QAB 1

522.!.302 X 1

522.!.401 A!.JE1.QCA 1

522.!.402 X 1

522.!.501 X 1

522.!.502 X 1

522.!.503 X 1

522.!.601 X 1

522.!.602 X 1

522.!.603 X 1

522.!.701 X 1

522.!.760 X 1

522.!.781 X 1

523.! B6.JK! 1

523.!.071.040 X 1

523.!.301 A!.JE1.QAB 1

523.!.401 A!.JE1.QCA 1

523.!.501 X 1

523.!.502 X 1

523.!.503 X 1

523.!.601 X 1

523.!.602 X 1

523.!.603 X 1

523.!.604 X 1

523.!.605 X 1

523.!.701 X 1

524.! X 1

524.!.501 X 1

524.!.502 X 1

524.!.601 X 1

524.!.701 X 1

525.! X 1

525.!.301 X 1

525.!.302 X 1

525.!.501 X 1

525.!.502 X 1

525.!.601 X 1

36

525.!.602 X 1

525.!.603 X 1

551.! D1.JE! 1

551.!.301 D1.JE!.QAB 1

551.!.302 D1.JE!.QAB 1

551.!.303 X 1

551.!.304 X 1

551.!.305 X 1

551.!.306 X 1

551.!.307 X 1

551.!.308 X 1

551.!.309 X 1

552.! D1.HD1.KF! 1

555.! D2.JK! 1

556.! D2.HD1 1

616.! X 1

622.! X 1

625.! X 1

634.! X 1

636.! B123.HD! 1

641.! B15.HD! 1

642.! B11.HD! 1

643.! B6.HD! 1

644.! B3.HD! 1

645.! B069.HD! 1

710.! X 1

750.! X 1

761.! X 1

762.! X 1

922.! F1.PA1 1

923.! D1.HF1 1

930.! F1 1

37

Appendix F Python conversion script
source code

The source code for the conversion script is contained within this appendix. Table 3 contains

the “Tag” class, Table 4 contains the “RDS” class and Table 5 contains the EBL conversion

function.

Table 3: Tag class source code

import re

class Tag:

 """Class to store RDS tag information and methods.

 Keyword arguments:

 tag_class -- RDS class

 serial_number -- RDS serial number

 name -- description

 level -- level in structure

 """

 def __init__(self, tag_class, serial_number, name, level):

 self.name = name

 self.tag_class = tag_class

 self.serial_number = serial_number

 self.tag = tag_class+str(serial_number) if serial_number != False

else tag_class

 self.level = level

 self.sources = {}

 self.childs = []

 def __eq__(self, other):

 if isinstance(other, Tag):

 return self.tag == other.tag

 return False

 def print(self):

 """Recursively print sub-tags to console."""

 for child in self.childs:

 jump = ""

 for i in range(0,child.level):

 jump += "\t"

 print(jump+child.tag+" - "+str(child.name)+" - From:

"+str(child.sources))

 child.print()

 def document_conversion(self, tag_rows, preceding):

 """Append RDS tag and source to existing list.

38

 Keyword arguments:

 tag_rows -- existing list to append rows to

 preceding -- tag above in the structure

 """

 if preceding != False:

 full_tag = preceding+"."+self.tag

 else:

 full_tag = self.tag

 tag_row = [full_tag, self.name, self.sources]

 tag_rows.append(tag_row)

 for i in range(0,len(self.childs)):

 self.childs[i].document_conversion(tag_rows, full_tag)

 def add_source(self, source_tag, source_system):

 """Add an converted source to tag."""

 if source_system in self.sources.keys():

 self.sources[source_system].append(source_tag)

 else:

 self.sources[source_system] = [source_tag]

 def find_child(self, tag):

 """Search for tag in sub-tags, return if found or False if not."""

 found = False

 for element in self.childs:

 if element.tag == tag:

 found = element

 return found

 return found

 def _find_next_serialnumber(self, tag):

 """Find next available serial number for tag, returns number."""

 used_numbers = [self.childs[i].serial_number for i, x in

enumerate(self.childs) if x.tag_class == tag]

 if not used_numbers:

 next_number = 1

 else:

 next_number = max(used_numbers)+1

 return next_number

 def _add_child_without_serialnumber(self,tag_class, name, level):

 """Add tag without a specified serial number, returns the created

tag.

 Keyword arguments:

 tag_class -- RDS class of the tag

 name -- description of the tag

39

 level -- level of the tag

 """

 serialnumber = self._find_next_serialnumber(tag_class)

 new_child = Tag(tag_class, serialnumber, name, level)

 self.childs.append(new_child)

 return new_child

 def _add_child_with_serialnumber(self,tag_class, serialnumber, name,

level):

 """Add tag with specified serial number, returns the created tag.

 Keyword arguments:

 tag_class -- RDS class of the tag

 serialnumber -- serial number

 name -- description of the tag

 level -- level of the tag

 """

 new_child = Tag(tag_class, serialnumber, name, level)

 self.childs.append(new_child)

 return new_child

 def add_child(self,tag,name,level):

 """Add tag, returns the created tag.

 Keyword arguments:

 tag -- RDS class of the tag

 name -- description of the tag

 level -- level of the tag

 """

 if "<" in tag:

 new_child = self._add_child_with_serialnumber(tag, False, name,

level)

 return new_child

 else:

 check_serialnumber = re.split(r"(\d+)",tag)

 check_serialnumber = list(filter(None, check_serialnumber))

 new_child = False

 if len(check_serialnumber)==1:

 new_child = self._add_child_without_serialnumber(tag, name,

level)

 elif len(check_serialnumber)==2:

 new_child =

self._add_child_with_serialnumber(check_serialnumber[0],

int(check_serialnumber[1]), name, level)

 else:

 #error with tag

 pass

40

 return new_child

Table 4: RDS class source code

import csv

from pandas import DataFrame

from tag import Tag

class RDS:

 """Class to control the conversion process."""

 def __init__(self):

 self.tags = Tag("Root","RDS",False,0)

 def print(self):

 """Print the current structure to the terminal."""

 print("Structure:")

 self.tags.print()

 def print_plant(self, top_node):

 """Print the structure for the plant to the terminal.

 Keyword arguments:

 top_node -- plant identifier

 """

 plant = self.tags.find_child(top_node)

 if plant != False:

 print(plant.tag+" - "+str(plant.name))

 plant.print()

 else:

 print("Not found")

 def save_conversion(self, filename, top_node = False):

 """Save and document the convertet structure as XLSX.

 Keyword arguments:

 filename -- name of the new file

 top_node -- optional plant identifier (default False)

 """

 top_child = False

 tag_rows = []

 if top_node == False:

 top_child = self.tags

 for plant in top_child.childs:

 tag_row = [plant.tag, plant.name, plant.sources]

 tag_rows.append(tag_row)

 else:

 plant = self.tags.find_child(top_node)

41

 if plant == False:

 top_child = []

 print("Plant identifier not found")

 return

 else:

 top_child = plant

 tag_row = [plant.tag, plant.name, plant.sources]

 tag_rows.append(tag_row)

 for i in range(0,len(top_child.childs)):

 top_child.childs[i].document_conversion(tag_rows, False if

top_node == False else top_child.tag)

 data = DataFrame(tag_rows, columns=['Tag','Name','Source'])

 data.to_excel(filename+".xlsx", index=False)

 def _load_csv(self, filepath, delimiter, limit = 100000):

 """Load rows from CSV and return as list.

 Keyword arguments:

 filepath -- file to load

 delimiter -- column delimiter

 limit -- optional maximum number of rows to read (default 100000)

 """

 data = []

 with open(filepath, newline='') as csvfile:

 reader = csv.reader(csvfile, delimiter=delimiter)

 counter = 0

 for row in reader:

 data.append(row)

 counter += 1

 if counter > limit:

 print("Lastet ",len(data)," rader.")

 return data

 print("Lastet ",len(data)," rader.")

 return data

 def _split_RDS(self, tag):

 """Seperate classes in RDS string to list.

 Keyword arguments:

 tag -- RDS tag

 """

 top_separation = tag.index(">")

 top_node = tag[:top_separation+1]

 classes = tag[top_separation+1:].split(".")

 if len(classes[0]) == 0:

 structure = [top_node]

 else:

42

 structure = [top_node]+classes

 return structure

 def load_RDS(self, filepath, delimiter):

 """Load RDS structure from CSV, with tags in first column and names

in second.

 Keyword arguments:

 filepath -- file to load

 delimiter -- column delimiter

 """

 rows = self._load_csv(filepath, delimiter)

 for i in range(0,len(rows)):

 tag = rows[i][0]

 structure = self._split_RDS(tag)

 self.add_tag(self.tags,structure,rows[i][1], 0)

 def add_tag(self, tag_node, tag, name, level = 0, source_tag = False,

source = False):

 """Add RDS tag to structure, including implicit tags.

 Keyword arguments:

 tag_node -- parent tag

 tag -- RDS tag

 name -- description

 level -- level counter (default 0)

 source_tag -- original tag (default False)

 source -- original tag standard (default False)

 """

 structure = tag

 if len(structure) == 1:

 child = tag_node.find_child(structure[0])

 if child == False:

 new_child = tag_node.add_child(structure[0], name, level)

 if source != False:

 new_child.add_source(source_tag, source)

 else:

 #Updating existing tag

 if child.name == False:

 child.name = name

 if source != False:

 child.add_source(source_tag, source)

 else:

 remaining_structure = structure[1:]

 child = tag_node.find_child(structure[0])

 if child == False:

43

 new = tag_node.add_child(structure[0], name=False,

level=level)

 self.add_tag(new, remaining_structure, name, level+1,

source_tag, source)

 else:

 self.add_tag(child, remaining_structure, name, level+1,

source_tag, source)

 def convert_structure(self, datapath, mappingpath, delimiter,

converter):

 """Convert existing tags to RDS and add to structure.

 Keyword arguments:

 datapath -- path to CSV-file containing tags

 mappingpath -- path to CSV-file containing the mapping

 delimiter -- delimiter use with CSV-files

 converter -- function to convert the tags

 """

 rows_to_convert = self._load_csv(filepath=datapath,

delimiter=delimiter)

 mapping = self._load_csv(filepath=mappingpath, delimiter=delimiter)

 ebl_rows, source, source_rows = converter(rows_to_convert, mapping)

 print("Converted ",len(ebl_rows)," of ",len(rows_to_convert),"

tags")

 for i in range(0,len(ebl_rows)):

 tag = ebl_rows[i][0]

 structure = self._split_RDS(tag)

 self.add_tag(self.tags,structure,ebl_rows[i][1], 0,

source_rows[i], source)

Table 5: EBL conversion function source code

import re

def convert_EBL(original_tag, mapping):

 """Method for convertin EBL to RDS, returns list with RDS tags, source

standard and list of original tags.

 Keyword arguments:

 original_tag -- list of EBL information

 mapping -- list of mappings to RDS

 """

 source = "EBL"

 source_rows = []

 ebl_rows = []

44

 tags = [i[0] for i in original_tag]

 names = [i[1] for i in original_tag]

 top_nodes_tags = [i[0] for i in (t for t in mapping if int(t[4])==0)]

 top_nodes_ebl = [i[3] for i in (t for t in mapping if int(t[4])==0)]

 lower_nodes_tags = [i[0] for i in (t for t in mapping if int(t[4])==1)]

 lower_nodes_ebl = [i[3] for i in (t for t in mapping if int(t[4])==1)]

 for i in range (0, len(tags)):

 top = ""

 lower = ""

 try:

 top_ebl = tags[i][:4]

 lower_ebl = tags[i][5:]

 top = top_nodes_ebl[top_nodes_tags.index(top_ebl)]

 if len(lower_ebl) == 0:

 ebl_rows.append([top,names[i]])

 source_rows.append(tags[i])

 else:

 try:

 substructure = lower_ebl.split(".")

 if len(substructure) > 1:

 serial_number = int(substructure[1])

 substructure[1] = "!"

 ebl_to_convert = ".".join(substructure)

 lower =

lower_nodes_ebl[lower_nodes_tags.index(ebl_to_convert)].replace('!',

str(serial_number))

 if len(lower) == 0:

 #no conversion specified

 pass

 elif lower == "X":

 #not relevant for RDS

 pass

 else:

 ebl_tag = top+lower

 ebl_rows.append([ebl_tag,names[i]])

 source_rows.append(tags[i])

 except(ValueError):

 #Class not found

 pass

 except(ValueError):

 #Plant not found

 pass

 return ebl_rows, source, source_rows

45

Appendix G Python test scripts
This appendix contains the code used for testing the classes and functions in the Python

script. Table 6 contains the code for testing the “Tag” class, Table 7 for the “RDS” class and

Table 8 for the EBL conversion function.

Table 6: Code for testing the Tag class

from tag import Tag

import unittest

class TestTag(unittest.TestCase):

 def test_add_child_without_number(self):

 """

 Check that tag without number is created with the corret tag.

 """

 parent = Tag("<test1>",False,"Testplant",0)

 target = Tag("A1",False,"Testclass",1)

 test_tag = parent.add_child("A","Testclass",1)

 self.assertEqual(target,test_tag)

 def test_add_child_with_number(self):

 """

 Check that tag without number is created with the corret tag.

 """

 parent = Tag("<test1>",False,"Testplant",0)

 target = Tag("A2",False,"Testclass",1)

 test_tag = parent.add_child("A2","Testclass",1)

 self.assertEqual(target,test_tag)

 def test_find_next_serialnumber_no_existing(self):

 """

 Check that the next number is 1 when there i no existing class.

 """

 parent = Tag("<test1>",False,"Testplant",0)

 parent.add_child("A2","Testclass",1)

 target_number = 1

 test_number = parent._find_next_serialnumber("B")

 self.assertEqual(target_number,test_number)

 def test_find_next_serialnumber_existing_ordered(self):

 """

 Check that the next number is the next available.

 """

 parent = Tag("<test1>",False,"Testplant",0)

 parent.add_child("A1","Testclass1",1)

 parent.add_child("A2","Testclass2",1)

 target_number = 3

46

 test_number = parent._find_next_serialnumber("A")

 self.assertEqual(target_number,test_number)

 def test_find_next_serialnumber_exisiting_unordered(self):

 """

 Check that the next number is the next available.

 """

 parent = Tag("<test1>",False,"Testplant",0)

 parent.add_child("A1","Testclass1",1)

 parent.add_child("A3","Testclass2",1)

 target_number = 4

 test_number = parent._find_next_serialnumber("A")

 self.assertEqual(target_number,test_number)

 def test_find_child_existing(self):

 """

 Check that it finds the tag.

 """

 parent = Tag("<test1>",False,"Testplant",0)

 parent.add_child("A1","Testclass1",1)

 parent.add_child("A2","Testclass2",1)

 target_child = Tag("A2",False,"Testclass2",1)

 test_child = parent.find_child("A2")

 self.assertEqual(target_child,test_child)

 def test_find_child_nonexisting(self):

 """

 Check that it returns false.

 """

 parent = Tag("<test1>",False,"Testplant",0)

 parent.add_child("A1","Testclass1",1)

 parent.add_child("A2","Testclass2",1)

 target_child = False

 test_child = parent.find_child("A3")

 self.assertEqual(target_child,test_child)

 def test_add_source_no_source(self):

 """

 Check that the new source is added.

 """

 target = {"testsource": ["testtag"]}

 tag = Tag("<test1>",False,"Testplant",0)

 tag.add_source("testtag","testsource")

 test = tag.sources

 self.assertDictEqual(target,test)

 def test_add_source_additional_source(self):

47

 """

 Check that the new source is added.

 """

 target = {"testsource": ["testtag","testtag2"]}

 tag = Tag("<test1>",False,"Testplant",0)

 tag.add_source("testtag","testsource")

 tag.add_source("testtag2","testsource")

 test = tag.sources

 self.assertDictEqual(target,test)

 def test_add_source_new_source(self):

 """

 Check that the new source type is added.

 """

 target = {"testsource1":

["testtag","testtag2"],"testsource2":["testtag3"]}

 tag = Tag("<test1>",False,"Testplant",0)

 tag.add_source("testtag","testsource1")

 tag.add_source("testtag2","testsource1")

 tag.add_source("testtag3","testsource2")

 test = tag.sources

 self.assertDictEqual(target,test)

 def test_documentation(self):

 """

 Check that the documentation is formatted correctly.

 """

 target =

[["<test1>","testplant",{"test":["1001"]}],["<test1>.A1","testunit",{"test":

["1001.400"]}]]

 test = []

 test_struct = Tag("Root","RDS",False,0)

 plant = test_struct.add_child("<test1>","testplant",1)

 plant.add_source("1001","test")

 unit = plant.add_child("A1","testunit",2)

 unit.add_source("1001.400","test")

 plant.document_conversion(test, False)

 self.assertListEqual(target,test)

if __name__ == '__main__':

 unittest.main()

48

Table 7: Code for testing the RDS class

import unittest

from RDS import RDS

class TestRDS(unittest.TestCase):

 def test_split_RDS_only_topnode(self):

 """

 Check that topnode is returned.

 """

 rds = RDS()

 target = ["<Plant1>"]

 test = "<Plant1>"

 result = rds._split_RDS(test)

 self.assertListEqual(target,result)

 def test_split_RDS_topnode_multiple_levels(self):

 """

 Check that topnode and rest is returned.

 """

 rds = RDS()

 target = ["<Plant1>","A1","AB1"]

 test = "<Plant1>A1.AB1"

 result = rds._split_RDS(test)

 self.assertListEqual(target,result)

 def test_add_tag_one_level(self):

 """

 Test that the plant is added.

 """

 target = "<plant1>"

 test = RDS()

 test.add_tag(test.tags, ["<plant1>"], "testplant")

 result = test.tags.childs[0].tag

 self.assertEqual(target,result)

 def test_add_tag_second_level(self):

 """

 Test that tag is added to plant.

 """

 target = "<plant1>.A1"

 test = RDS()

 test.add_tag(test.tags, ["<plant1>"], "testplant")

 test.add_tag(test.tags, ["<plant1>","A1"], "testunit")

 result =

str(test.tags.childs[0].tag)+"."+str(test.tags.childs[0].childs[0].tag)

 self.assertEqual(target,result)

49

 def test_add_tag_implicit(self):

 """

 Test that the tag is added, inlcuding implicit tags.

 """

 target = "<plant1>.A1.AB1"

 test = RDS()

 test.add_tag(test.tags, ["<plant1>","A1","AB1"], "test")

 result =

str(test.tags.childs[0].tag)+"."+str(test.tags.childs[0].childs[0].tag)+"."+

str(test.tags.childs[0].childs[0].childs[0].tag)

 self.assertEqual(target,result)

 def test_add_tag_new(self):

 """

 Test that tag is addede to existing structure.

 """

 target = "<plant1>.B1.AB1"

 test = RDS()

 test.add_tag(test.tags, ["<plant1>","A1","AB1"], "test")

 test.add_tag(test.tags, ["<plant1>","B1","AB1"], "test2")

 result =

str(test.tags.childs[0].tag)+"."+str(test.tags.childs[0].childs[1].tag)+"."+

str(test.tags.childs[0].childs[1].childs[0].tag)

 self.assertEqual(target,result)

 def test_add_tag_copy(self):

 """

 Test that tag existing tag is updated.

 """

 target = "test2"

 test = RDS()

 test.add_tag(test.tags, ["<plant1>","A1","AB1"], "test")

 test.add_tag(test.tags, ["<plant1>","A1"], "test2")

 result = str(test.tags.childs[0].childs[0].name)

 self.assertEqual(target,result)

 def test_add_tag_no_serial(self):

 """

 Test that tag added with serial number.

 """

 target = "A1"

 test = RDS()

 test.add_tag(test.tags, ["<plant1>","A"], "test")

 result = str(test.tags.childs[0].childs[0].tag)

 self.assertEqual(target,result)

if __name__ == '__main__':

50

 unittest.main()

Table 8: Code for testing the EBL conversion function

from convert import convert_EBL

import unittest

class TestTag(unittest.TestCase):

 def setUp(self):

 self.testmapping =

[["1001","","","<plant1.PS1.HP1>","0"],["1002","","","<plant2.PS1.HP1>","0"]

,["421.!","","","A!.RA1","1"],["487.!","","","H2","1"]]

 def test_convert_plant(self):

 """

 Check that plant is converted.

 """

 target = [['<plant1.PS1.HP1>', 'testplant']], 'EBL', ['1001']

 test_tag = [["1001","testplant"]]

 result = convert_EBL(test_tag,self.testmapping)

 self.assertEqual(target,result)

 def test_convert_tag(self):

 """

 Check that tag with static serial is converted correctly.

 """

 target = [['<plant1.PS1.HP1>H2', 'bailing']], 'EBL', ['1001.487.1']

 test_tag = [["1001.487.1","bailing"]]

 result = convert_EBL(test_tag,self.testmapping)

 self.assertEqual(target,result)

 def test_convert_tag_convert_number(self):

 """

 Check that tag is converted correctly with number translation.

 """

 target = [['<plant1.PS1.HP1>A1.RA1',

'generator1'],['<plant1.PS1.HP1>A3.RA1', 'generator3']], 'EBL',

['1001.421.1', "1001.421.3"]

 test_tag = [["1001.421.1","generator1"],["1001.421.3","generator3"]]

 result = convert_EBL(test_tag,self.testmapping)

 self.assertEqual(target,result)

 def test_convert_tag_multiple_plants(self):

 """

 Check that tag is converted for multiple plants.

 """

51

 target = [['<plant1.PS1.HP1>A1.RA1',

'generator1'],['<plant2.PS1.HP1>A1.RA1', 'generator1']], 'EBL',

['1001.421.1', "1002.421.1"]

 test_tag = [["1001.421.1","generator1"],["1002.421.1","generator1"]]

 result = convert_EBL(test_tag,self.testmapping)

 self.assertEqual(target,result)

 def test_convert_plant_not_in_mapping(self):

 """

 Check that tag is not added if there is no match in plant.

 """

 target = [],"EBL",[]

 test_tag = [["1003.421.1","generator1"]]

 result = convert_EBL(test_tag,self.testmapping)

 self.assertEqual(target,result)

 def test_convert_component_not_in_mapping(self):

 """

 Check that tag is not added if there is no match in component.

 """

 target = [],"EBL",[]

 test_tag = [["1001.422.1","turb1"]]

 result = convert_EBL(test_tag,self.testmapping)

 self.assertEqual(target,result)

if __name__ == '__main__':

 unittest.main()

